Memantine as an Example of a Fast, Voltage-Dependent, Open Channel N-Methyl-D-Aspartate Receptor Blocker

Chris G. Parsons and Kate Gilling

Summary

Electrophysiological techniques can be used to great effect to help determine the mechanism of action of a compound. However, many factors can compromise the resulting data and their analysis, such as the speed of solution exchange, expression of additional ion channel populations including other ligand-gated receptors and voltage-gated channels, compounds having multiple binding sites, and current desensitization and rundown. In this chapter, such problems and their solutions are discussed and illustrated using data from experiments involving the uncompetitive \textit{N}-methyl-\textit{d}-aspartate (NMDA) receptor antagonist memantine. Memantine differs from many other NMDA receptor channel blockers in that it is well tolerated and does not cause psychotomimetic effects at therapeutic doses. Various electrophysiological parameters of NMDA-induced current blockade by memantine have been proposed to be important in determining therapeutic tolerability, potency, onset and offset kinetics, and voltage dependency. These were all measured using whole cell patch-clamp techniques using hippocampal neurons. Full results are shown here for memantine, and these are summarized and compared with those from similar experiments with other NMDA channel blockers. The interpretation of these results is discussed, as are theories concerning the tolerability of NMDA channel blockers, with the aim of illustrating how electrophysiological data can be used to form and support a physiological hypothesis.

Key Words: NMDA; uncompetitive; concentration dependence; concentration clamp; voltage dependence; kinetics.
1. Introduction

Memantine is an uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist that is registered in Europe and the United States for the treatment of moderate to severe Alzheimer’s disease (AD). It has clear symptomatic effects in both AD patients (1,2) and animal models of AD (3) and, on the basis of its mechanism of action, is also likely to show neuroprotective activity in AD (3,4). This compound blocks the channel in an use-dependent manner, meaning that it can only gain access to the channel in the presence of agonist, and remains trapped in the channel following removal of agonist (3,5,6). Both the clinical tolerability and the symptomatic effects of memantine have been attributed to its fast blocking kinetics and strong voltage dependency (3,5–7). These properties have been characterized by numerous groups using whole cell patch-clamp recordings from primary cultures of hippocampal and cortical neurons (6,8–15). However, there are several factors that must be taken into account when performing such experiments to ensure the quality of the recordings and their analysis.

- Fast blocking kinetics can only be measured accurately when fast concentration-clamp techniques are used to apply antagonists. This is particularly problematic with primary cultures of hippocampal/cortical neurons due to their large dendritic arborization, the inability to lift such cells from the bottom of the dish, and resulting problems of buffered diffusion. Fluid-in-fluid fast concentration-clamp systems with relatively large application diameters, for example, theta glass stepping motor systems, are preferred over systems such as U-type application tubes with which offset kinetics cannot be addressed because there is no real “wash off” of compounds with the latter technique.

- The native cells used probably have mixed receptor populations (for example, N1a/2A and NR1a/2B), and differences in the potency of the antagonist at each of the receptor subtypes may exist. Uncompetitive antagonists such as memantine may also bind to multiple sites within the NMDA receptor channel (14,15). Both of these aspects can lead to double exponential blocking/unblocking kinetics that first become apparent when fast concentration-clamp techniques are used. When present, these double kinetics must be measured accurately and subsequently analyzed. In addition, the unblocking kinetics are voltage dependent, and this aspect cannot be addressed by using ramping protocols in voltage-dependency experiments (see below).

- Voltage-dependency experiments are often hampered by the presence of additional voltage-gated ion channels, and their contribution to the currents recorded must be minimized and/or accounted for in the analysis. One way around this problem is to use tetrodotoxin (TTX) to block voltage-activated sodium channels (VASCs) and replace K⁺ with Cs⁺ in the recording solutions to reduce the effects...
Memantine as an Example

of voltage-activated potassium channels (VAKCs). The contribution of voltage-activated calcium channels on the currents measured can be reduced by lowering Ca\(^{2+}\) in the extracellular solution (see below). The contribution of all voltage-activated channels (VACs) can also be reduced by avoiding the use of relatively fast ramping protocols and rather recording individual NMDA-induced currents after holding at different holding potentials and allowing the VACs to desensitize/inactivate for several 10s of seconds following each incremental depolarizing step. For example, shifting the holding potential from \(-90\) to \(+70\) mV in steps of 10 mV, allowing at least 30 s at each new holding potential before applying agonist. Residual VAC currents can then be subtracted from the agonist-induced currents mediated through ligand-gated channels such as the NMDA receptor channel. However, such protocols are long and are associated with other potential problems (see below).

- NMDA receptors show various forms of Ca\(^{2+}\)-dependent desensitization (with time constants of 500 ms to several seconds) (16–18), the presence of which can interfere with experiments assessing the blocking kinetics of open channel blockers such as memantine. This problem can be minimized by decreasing Ca\(^{2+}\) concentrations in the solutions used (see also above), but Ca\(^{2+}\) is an important cation for membrane stability. One way around this additional problem is to reduce Ca\(^{2+}\) concentrations in the presence of agonist (0.2 mM) but maintain normal Ca\(^{2+}\) concentrations (1.5 mM) between agonist applications to allow the cell membrane to “recover” between agonist applications.

- Glycine is a co-agonist for NMDA receptors (at the glycine\(_B\) site) with an EC\(_{50}\) of around 1 \(\mu\)M, and its presence is a prerequisite for receptor channel activation by glutamate or NMDA (19). At non-saturating glycine concentrations, NMDA receptors show strong glycine-dependent desensitization, with quite fast kinetics (\(\tau = 100–400\) ms), which can impede the analysis of antagonist blocking kinetics (20). Moreover, glycine concentrations in the solutions can be dynamically altered by the presence of microbial organisms in the perfusion setup as glycine is involved in metabolism. As such, the magnitude and rate of glycine-sensitive desensitization can change during long recordings, and it is essential to keep the whole perfusion system very clean. D-Serine is also a co-agonist for the glycine site (21), but it is not metabolized so easily and is the preferred co-agonist for such experiments, used at saturating concentrations. Clean perfusion systems are nonetheless very important for such experiments, for example, contamination with previously used “sticky” (most often lipophyllic) compounds should be avoided.

- Aside from the various forms of receptor desensitization detailed above, NMDA receptors also show moderate rundown that should be minimized by the choice of appropriate intracellular (ATP regenerating) and extracellular (low Ca\(^{2+}\)) solutions. However, some form of run-down compensation is essential in the analysis to account for such dynamic changes, especially when assessing the potency of antagonists with several concentrations being tested sequentially over time.
Most scientific papers on patch-clamp experiments tend to minimize the description of the methods used, and minor details that could be very important for the final outcome are often not apparent from such descriptions. The aim of this chapter is to describe, in detail, the methods used to address such aspects for memantine as an example of a fast, voltage-dependent, NMDA receptor channel blocker.

2. Materials

2.1. Cell Culture

1. Mg\(^{2+}\)-free Hanks’ buffered salt solution (Gibco BRL, Germany) stored at 2–5°C and warmed to approximately 35°C before use.

2. Solution of 0.05% DNase and 0.3% ovomucoid (Sigma Aldrich, Germany) in phosphate-buffered saline (PBS, Gibco BRL) stored at −20°C and warmed to approximately 35°C before use.

3. Solution of 0.66% Trypsin and 0.1% DNAse (Sigma Aldrich) in PBS stored at −20°C and warmed to approximately 35°C before use.

4. Minimum essential medium (Gibco BRL) stored at 2–5°C and warmed to approximately 35°C before use.

5. Poly-DL-ornithine (500 \(\mu\)g/ml) dissolved in 0.5 M boric acid (both from Sigma Aldrich), stored at −20°C, and warmed to approximately 35°C before use.

6. Laminin (Sigma Aldrich) dissolved in PBS to a concentration of 10 \(\mu\)g/ml, stored at −20°C, and warmed to approximately 35°C before use.

7. NaHCO\(_3\)/HEPES-buffered minimum essential medium supplemented with 5% fetal calf serum and 5% horse serum (all from Gibco BRL), stored at 2–5°C, and warmed to approximately 35°C before use.

8. Cytosine-β-d-arabinofuranoside (Sigma Aldrich) stored at 2–5°C.

9. Plasticware including flasks, Petri dishes, and pipettes (Corning Incorporated, Germany).

2.2. Patch Clamp

1. Borosilicate glass for recording pipettes with an outer diameter of 1.5 mm and an inner diameter of 1.275 mm (Hilgenberg GmbH, Germany; cat. no. 1408411).

2. The P-97 horizontal pipette puller (Sutter Instruments, USA).

3. Square-walled application pipette glass with a wall-to-wall measurement of 700 \(\mu\)m (Warner Instruments LLC, USA; cat. no. P/N 3SG700-5).

5. Silicon-glass tubing with an external diameter of 0.43 mm and an internal diameter of 0.32 mm (S.G.E. GmbH, Germany).

6. Polyethylene tubing of the PE-10 size (Clay Adams, USA).

7. Low-volume manifolds (MM series six-port manifolds; Warner Instruments LLC).
8. Manifold valves (Lee Hydraulische Miniaturkomponenten GmbH, Germany; cat. no. LFAA1201718H).
9. TIB 14S digital output trigger interface (HEKA, Germany).
10. EPC-9 or EPC-10 amplifier (HEKA).
11. Axiovert 35 inverted microscope (Carl Zeiss, Germany).
12. A valve driver, similar to those produced by Lee (Lee Hydraulische Miniaturkomponenten GmbH; cat. no. IECX0501500A).
13. Software for data acquisition and analysis, such as TIDA 5.0 (HEKA), Excel 2000 (Microsoft, USA), and GraFit 5.0 (Erithacus Software Ltd., UK), and suitable computer hardware.
14. Intracellular solution used for recording NMDA receptor-mediated currents from hippocampal neurons, consisting of 120 mM CsCl, 10 mM EGTA, 1 mM MgCl₂, 0.2 mM CaCl₂, 10 mM glucose, 20 mM tetraethyl ammonium chloride, 2 mM ATP, and 0.2 mM cAMP. All these components were purchased from Sigma Aldrich and stored according to manufacturer’s instructions.
15. Extracellular bath solution used for recording NMDA receptor-mediated currents from hippocampal neurons, consisting of 140 mM NaCl, 3 mM CsCl, 10 mM glucose, 10 mM HEPES, 0.2 mM CaCl₂, and 4.5 mM sucrose, and supplemented with 0.35 μM TTX. All these components were purchased from Sigma Aldrich and stored according to manufacturer’s instructions.
16. NMDA (Sigma Aldrich) stored as a 100 mM stock solution in distilled water at −20°C. The stock solution of the co-agonist d-serine (Sigma Aldrich) prepared and stored under the same conditions but at a concentration of 10 mM.
17. The NMDA receptor antagonists memantine, neramexane (Merz Pharmaceuticals GmbH, Germany), ketamine, PCP, dextromethorphan, and dextrorphan (Sigma Aldrich) all stored in distilled water at 2–5°C as stock solutions of 10 mM.

3. Methods

3.1. Cell Culture

Hippocampal tissue was obtained from rat embryos (E20–E21) and was then transferred to Ca²⁺- and Mg²⁺-free Hanks’ buffered salt solution on ice. Cells were mechanically dissociated in 0.05% DNAse/0.3% ovomucoid solution following an 8-min pre-incubation with 0.66% Trypsin/0.1% DNAase solution. The dissociated cells were then centrifuged at 18 g for 10 min, re-suspended in minimum essential medium, and plated at a density of 150,000 cells/cm² onto poly-D-L-ornithine/laminin-precoated plastic Petri dishes. These dishes were precoated by treating dishes overnight at 37°C with poly-D-L-ornithine, washing twice with PBS, and then incubating with laminin solution overnight at 37°C. Excess solution was aspirated and dishes washed with PBS followed by the cell medium before cell plating. The cells were nourished with NaHCO₃/HEPES-buffered minimum essential medium supplemented with 5% fetal calf serum.
and 5% horse serum and incubated at 37°C with 5% CO₂ at 95% humidity. The medium was exchanged completely following the inhibition of further glial mitosis with cytosine-β-d-arabinofuranoside after about 5 days in vitro (DIV). Patch-clamp recordings were made after 12–15 DIV.

3.2. Patch Clamp

3.2.1. Recording

Voltage-clamp recordings were made in the whole cell configuration of the patch-clamp technique at a holding potential of −70 mV, unless otherwise stated. All recordings were made at room temperature (20–23°C) (Note: The kinetics of drug/receptor interactions are highly dependent on temperature.) Pyramidal cells were visualized using an inverted microscope under phase contrast and selected for patching based upon their position and morphology. The cells were opened by suction after the formation of a giga seal between the pipette and cell membrane and were allowed to stabilize for 1–2 min before recordings were made. Patch-clamp pipettes were pulled from borosilicate glass using a horizontal puller and, when filled with intracellular solution, had resistances of 1–3 MΩ. Currents were recorded using an EPC-9/10 amplifier, and TIDA 5.0. software was used for the collection and storage of data. For full details of the functions, measurements, and compensations performed by the EPC-9/10 amplifier and related software see refs. 22,23. Briefly, offset compensation was performed for each open pipette in order to ensure that the command potential is equal to the membrane potential. The liquid junction potential was measured for each set of solutions using an agar bridge in place of the usual silver chloride pellet as the ground electrode. Liquid junction potential was measured by filling one perfusion chamber with intracellular solution as the reference and the other chamber with extracellular solution. For the solutions used for recording from the hippocampal neurons, the liquid junction potential was measured to be 3.4 mV.

Series resistance was measured (mean value of 4.22 ± 0.14 MΩ) and accordingly compensated for in conjunction with capacitance. Fast capacitive currents were corrected for by the EPC-9/10 upon formation of the giga seal, and whole cell capacitance correction was performed after the cell was opened. These procedures were performed semi-automatically using the amplifier and TIDA 5.0 software.

The current signal was filtered by the EPC-9/10 amplifier using the three-pole prefilter with Bessel 10 kHz bandwidth and the four-pole filter set to 2.9 kHz with Bessel characteristic. Current measurements were acquired at a rate of 10 kHz to avoid potential problems of aliasing.
Memantine as an Example

3.2.2. Perfusion System

Test substances were applied by switching channels of a modified stepper motor-driven, double-barreled theta glass application pipette. The openings of the square-walled application pipette glass were reduced to 200–250 μM by pulling these glass capillaries, by hand, over a Bunsen burner and then cleanly separating “two” new perfusion pipettes by cutting them with a diamond cutter. Furthermore, the internal dead volume of such application pipettes was reduced to a minimum by the following procedure. Silicon-glass tubing was inserted as far as possible toward the tips of the theta glass application “pipettes” (around 2–3 mm from the tip). The non-tip, open ends of the silicon-glass tubing was blocked with acrylic glue, and the pipettes were then reverse filled with molten wax almost to the open tips of the silicon-glass tubing. After this procedure, wax was cleaned from the outside of the perfusion pipettes, and the glued ends of the silicon-glass tubing were cut free and attached through conventional polyethylene tubing to the low volume six-port manifolds. These manifolds were then connected to an automatic perfusion array gated through manifold valves to gravity-fed syringes containing the solutions of interest. Perfusion was controlled using the TIB 14S digital output trigger interface in conjunction with the EPC-9/10 and the TIDA data acquisition system. Valves were driven by a custom-made valve driver to provide the necessary power (490 mW per valve) and spiked voltage jumps. Twenty volts for 10 ms then held at 10 V.

Optimal positioning of the pipette was practiced using solutions of different osmolarity to visualize the interface between solutions under phase-contrast microscopy. The best angle was found to be 45°, and care was taken to keep the lower edge of the application pipette tip parallel to, and as close as possible to, the bottom of the dish without scratching the plastic during the stepping motor movement. The lower edge of the application pipette was positioned with the start channel centered some 150–250 μM from the neuron of interest. The solution exchange time of this perfusion system as measured using small, lifted cells was approximately 20 ms. Complete exchange of the perfused solutions to be applied through the application pipette was of the order of 1–2 s. The level of bath solution was kept constant using a vacuum-driven glass suction pipette. This is important to avoid changes in recording pipette capacitive characteristics.

3.2.3. Solutions

The composition of the intracellular solution used when recording NMDA receptor mediated from hippocampal neurons is given in Subheading 2.2.14.
The absence of intracellular K\(^+\) and the presence of intracellular TEA should block VAKCs. ATP and cAMP were included to decrease rundown although more elaborate ATP regenerating systems can be used for more problematic receptors such as neuronal nicotinic receptors (24). The corresponding extracellular bath solution composition is given in Subheading 2.2.15. TTX was included at 0.35\(\mu\)M in order to block VASCs, and \(\delta\)-serine was present at 10\(\mu\)M in all extracellular solutions—this concentration being sufficient to saturate the glycine\(_B\) site, which should remain stable during the course of the experiments.

3.2.4. Cumulative Protocols

Cumulative protocols can be used for faster determination of concentration dependency of blockade and were shown to produce very similar \(IC_{50}\) determinations as kinetic protocols (see Table 1). In these protocols, five to six sequentially increasing concentrations (in a log 3 progression, for example, 0.3, 1, 3, 10, and 30\(\mu\)M) of memantine or other standard uncompetitive NMDA receptor antagonists are applied in a cumulative regime, each for 10–30 s, in the continuous presence of NMDA (200\(\mu\)M) for 100–200 s, and recovery is only recorded after the last and highest concentration. With such protocols, cells do not have to remain stable for such long recording durations. However, they give little useful information on the kinetics of block, and desensitization/rundown is more of a problem.

3.2.5. Kinetic Experiments

Kinetic experiments were performed by applying various single concentrations of memantine or standard uncompetitive NMDA receptor antagonists for 10–30 s in the continuous presence of NMDA (200\(\mu\)M) for 30–120 s. When using this protocol, currents are allowed to recover after each application of antagonist, and onset and offset kinetics can be measured.

3.2.6. Voltage Dependency

Fractional block of currents by memantine (10\(\mu\)M) at various holding potentials was used to determine the voltage dependency of this effect. The holding potential was changed every 120 s from \(-80\) to \(+60\) mV in 10 mV increments, and NMDA (200\(\mu\)M) was applied for 41 s at each holding potential. Memantine (10\(\mu\)M) was applied for 11 s during each NMDA application period. During the recovery period, 15 s following the removal of memantine, neurons were clamped to \(+70\) mV for 5 s in the continuing presence of NMDA to facilitate complete recovery from antagonism. Similar experiments were
Table 1
Summary of the Results From Experiments Measuring the Antagonistic Properties of Various Known N-Methyl-D-Aspartate (NMDA) Receptor Antagonists Against NMDA-Induced Currents Recorded From Xenopus Oocytes and Cultured Hippocampal Neurons

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cumulative IC_{50} (µM)</th>
<th>Cumulative Hill</th>
<th>Kinetic IC_{50} (µM)</th>
<th>Kinetic Hill</th>
<th>K_{on} (10^8 M/s)</th>
<th>K_{off} (per second)</th>
<th>K_{H} (µM)</th>
<th>IC_{50} (0 mV) (µM)</th>
<th>δ</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memantine</td>
<td>1.87 ± 0.17</td>
<td>0.80 ± 0.04</td>
<td>1.27 ± 0.08</td>
<td>0.93 ± 0.06</td>
<td>5.94 ± 0.35</td>
<td>0.125 ± 0.019</td>
<td>2.10 ± 0.450</td>
<td>17.35 ± 1.78</td>
<td>0.83 ± 0.04</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>Neramexane</td>
<td>1.21 ± 0.04</td>
<td>0.88 ± 0.02</td>
<td>0.85 ± 0.05</td>
<td>0.81 ± 0.03</td>
<td>9.30 ± 0.90</td>
<td>0.120 ± 0.008</td>
<td>1.30 ± 0.200</td>
<td>16.99 ± 2.09</td>
<td>0.96 ± 0.04</td>
<td>0.10 ± 0.03</td>
</tr>
<tr>
<td>Ketamine</td>
<td>1.47 ± 0.22</td>
<td>0.82 ± 0.08</td>
<td>0.98 ± 0.09</td>
<td>1.01 ± 0.08</td>
<td>3.95 ± 0.50</td>
<td>0.070 ± 0.005</td>
<td>1.670 ± 0.320</td>
<td>13.16 ± 0.90</td>
<td>0.85 ± 0.05</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>PCP</td>
<td>0.13 ± 0.01</td>
<td>0.78 ± 0.08</td>
<td>0.11 ± 0.03</td>
<td>0.70 ± 0.05</td>
<td>7.00 ± 0.19</td>
<td>0.010 ± 0.003</td>
<td>0.143 ± 0.004</td>
<td>1.26 ± 0.11</td>
<td>0.05 ± 0.04</td>
<td>0.10 ± 0.17</td>
</tr>
<tr>
<td>Dextromethorphan</td>
<td>1.95 ± 0.17</td>
<td>1.37 ± 0.15</td>
<td>2.11 ± 0.17</td>
<td>1.16 ± 0.10</td>
<td>1.74 ± 0.16</td>
<td>0.227 ± 0.022</td>
<td>2.470 ± 1.820</td>
<td>15.34 ± 1.51</td>
<td>0.84 ± 0.05</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>Dextrophan</td>
<td>0.34 ± 0.05</td>
<td>1.02 ± 0.10</td>
<td>0.36 ± 0.08</td>
<td>1.00 ± 0.17</td>
<td>19.90 ± 0.78</td>
<td>0.063 ± 0.004</td>
<td>0.377 ± 0.023</td>
<td>3.39 ± 0.70</td>
<td>0.61 ± 0.06</td>
<td>−0.01 ± 0.14</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>NC</td>
<td>NC</td>
<td>37.62 ± 1.41</td>
<td>0.82 ± 0.02</td>
<td>11.28 ± 0.75</td>
<td>21.61 ± 0.60</td>
<td>191.6 ± 13.8</td>
<td>5521 ± 261</td>
<td>0.95 ± 0.02</td>
<td>−0.32 ± 0.01</td>
</tr>
</tbody>
</table>

NC, not calculated.

Only compounds produced by Merz Pharmaceuticals GmbH were tested using Xenopus oocytes. The hippocampal IC_{50} and Hill coefficient values and onset and offset kinetics are calculated from recordings in which the NMDA currents were allowed to recover between the application of various concentrations on antagonist. All data are shown in the form of value ± SE.
performed with PCP, dextrorphan, and (+)MK-801 except that the application and recovery times had to be increased for these very slow channel blockers.

In order to subtract any residual VAC currents, mirror voltage-clamp (P5) protocols with smaller (20%) voltage steps in the opposite direction were run between agonist and antagonist applications at each holding potential, for example, the equivalent for a step from -90 to $+70$ mV (difference of -160 mV) was -90 to -122 mV (difference of -32 mV).

3.2.7. Analysis of Data

TIDA 5.0 software was used for the quantification of individual current amplitudes and kinetics. Excel 2000 was used to pool these data and GraFit 5.0 software used to fit pharmacological equations and pooled kinetic K_{on} and K_{off} values. For all data points, the value given is the mean of results from four to eight cells per concentration.

Rundown was usually not extreme for these NMDA receptor currents recorded from cultured hippocampal neurons (normally less than 10% over a 1-min period in the continuous presence of agonist). However, in order to produce the most accurate assessment of potency, the analysis nevertheless corrected for extrapolated linear current rundown—this was increasingly important for high-affinity compounds where the duration of the agonist exposure was prolonged to assure that low concentrations of antagonist reached steady-state blockade. Antagonism of NMDA receptor-mediated currents was measured as the magnitude of the steady-state blocked current as a percentage of the control current. For non-kinetic antagonistic protocols with five cumulatively increasing concentrations of antagonist, the control current for each antagonist concentration was calculated by a linear projection from the steady-state current before and after antagonist application, that is, for the first antagonist concentration, control current $= 0.85 \times$ current before antagonist $+ 0.15 \times$ recovery current. For the second antagonist concentration, these same currents were multiplied by 0.7 and 0.3, respectively, and so on for all concentrations. For kinetic protocols, single concentrations of antagonist were applied in the continuing presence of agonist, and the control current was taken as the mean of the steady-state current before and after antagonist application.

Potency of compounds was assessed by plotting the mean percentage current magnitude, calculated with standard error against antagonist concentration, and a curve was fit using the logistic equation for which the variable parameters
Memantine as an Example

IC₅₀ and Hill coefficient (n) were free and the range and background values were normally set to 100 and 0, respectively;

\[
\% \text{ current} = \frac{\text{range}}{1 + \left(\frac{\text{antagonist}}{\text{IC}_{50}}\right)^n} + \text{background.} \tag{1}
\]

For kinetic protocols, exponential fits to both onset and offset kinetics were made using TIDA 5.0 software, and most onset and offset responses were often well fit by a single exponential function, where a and b are current amplitudes and c represents the time constant, τ:

\[
\text{amplitude} = a + b \cdot e^{c \cdot \text{time}}. \tag{2}
\]

When double exponential fits described the data better, these were fit with the following equation:

\[
\text{amplitude} = a + b \cdot e^{c \cdot \text{time}} + d \cdot e^{f \cdot \text{time}}, \tag{3}
\]

where a, b, and d are current amplitudes and c and f are time constants (c represents τ_{fast} and f is τ_{slow}). These were then integrated to produce a single time constant (τ_{combined}) according to Eq. 4.

\[
\tau_{\text{combined}} = \frac{\left[c \cdot b / (b + d) \right] + \left[f \cdot d / (b + d) \right]}{\left[b / (b + d) \right] + \left[d / (b + d) \right]} \tag{4}
\]

The rational for this weighting procedure was to allow simple comparison between the rate kinetics produced by this investigation and also with previous data for memantine and other channel blockers for which similar techniques or simple single exponentials were used to fit the data. Another reason for this weighting was to allow a simple calculation of calculated \(K_d\) (see Eq. 6).

Mean values of the time constant (τ_{off}) were calculated for each concentration of antagonist, and 1/τ_{off} was plot against concentration. These data were fit using linear equations, where m is the gradient of the line, which corresponds to \(K_{on}\) for the onset rate fit, and g is the intercept at the y axis, which corresponds to \(K_{off}\) for the offset rate fit:

\[
y = m \cdot x + g. \tag{5}
\]

All compounds tested showed concentration-dependent open channel blocking kinetics, whereas the offset rate was essentially concentration independent. As expected, the fit of \(\tau_{on}\) against concentration intercepted the y
axis at similar values to the fit of τ_{off} against concentration. Calculation of the ratio $K_{\text{off}}/K_{\text{on}}$ was used to reveal an apparent K_d that was then compared with the IC_{50} calculated at equilibrium:

$$K_d = \frac{K_{\text{off}}}{K_{\text{on}}}.$$

(6)

To assess voltage dependency, single concentrations of antagonist were applied to currents in the plateau phase and then the cell was allowed to recover before stimulation was repeated at a more positive holding potential (holding potential was increased by increments of $+10\,\text{mV}$ each time). Blockade was expressed as a percentage of the mean control current recorded before and after the application of antagonist, as in the kinetic experiments described above. The pooled data were then fit by the following equation, where $IC_{50}(0)$ is the IC_{50} at 0 mV, β is the fraction of voltage-independent sites, δ is the fraction of the electric field sensed by the voltage-dependent site, and all other parameters have their normal meaning (z, valency; F, Faraday’s constant; R, universal gas constant; and T, absolute temperature):

$$\text{fractional current} = \frac{1 - \beta}{[1 + \text{antagonist}] / [IC_{50}(0)] \cdot e^{-\delta zFV/RT}}.$$

(7)

4. Results

The application of NMDA ($200\,\mu\text{M}$) in the continuous presence of d-serine ($10\,\mu\text{M}$) to hippocampal neurons evoked currents that were attenuated by all the uncompetitive NMDA receptor antagonists used in this study. The data are summarized in Table 1.

4.1. Potency

Initial experiments involved the application of five sequentially increasing concentrations of antagonist. However, kinetic measures of both onset and offset rates for each concentration of antagonist cannot be determined using this application protocol, so the kinetic protocol was employed that involved the application of antagonist in the continuous presence of NMDA and d-serine with a period of current recovery between each antagonist concentration. This protocol could also be considered to give more accurate measure of potency, as the magnitude of blockade by each concentration is assessed compared with the current before and after each application of antagonist, but the difference between values determined from each set of results is clearly only slight (see Table 1).
Memantine antagonized NMDA currents concentration-dependently with an \(IC_{50} \) value of \(1.87 \pm 0.17 \mu M \) and a Hill coefficient of \(0.80 \pm 0.04 \) when the cumulative protocol was used (see Fig. 1). From the data produced using the kinetic protocol, as shown in Fig. 1B, a new concentration-response curve was produced, and the \(IC_{50} \) value calculated from this curve was only marginally lower (\(1.27 \pm 0.08 \mu M \)) although the difference does reach a level of significance (\(p = 0.019 \), \(t = 3.19 \); Student’s \(t \)-test using raw data). The Hill coefficient is slightly higher (\(0.93 \pm 0.06 \)) than that derived from the earlier data, but values derived using these two protocols are not significantly different (\(p > 0.05 \); Student’s \(t \)-test using raw data).

4.2. Kinetics

Simple analysis of the kinetic data shows memantine to have concentration-dependent blocking and concentration-independent unblocking kinetics (\(K_{on} = 5.94 \pm 0.35 \times 10^4 M/s \) and \(K_{off} = 0.125 \pm 0.019 \) per second). From these values, \(K_{d} \) can be calculated as \(2.10 \pm 0.45 \mu M \) according to the equation \(K_{d} = K_{off}/K_{on} \), which correlates well with the \(IC_{50} \) values calculated by both of the concentration-response curves.

However, memantine did indeed sometimes show double exponential kinetics (see Fig. 2). The onset and offset kinetics of blockade following concentration jumps with memantine (10 \(\mu M \) at \(-70 \) mV) showed double exponential kinetics: \(\tau_{on} \) fast \(86.9 \pm 6.3 \) ms (64.7%); \(\tau_{on} \) slow \(1383 \pm 122 \) ms; \(\tau_{off} \) fast \(834 \pm 321 \) ms (22.9%); and \(\tau_{off} \) slow \(4795 \pm 921 \) ms. It should be noted that the kinetics of blockade by memantine in these experiments with d-serine (10 \(\mu M \) at \(-70 \) mV) were somewhat faster than those using glycine at a subsaturating concentration (1 \(\mu M \) at \(-70 \) mV) (12). This is not surprising as channel gating kinetics also influence the kinetics of open channel blockade. The relief of blockade following voltage jumps to \(+70 \) mV in the continuous presence of memantine (10 \(\mu M \)) also showed rapid, double exponential kinetics: \(\tau_{off} \) fast \(98.7 \pm 38.1 \) ms (43.9%) and \(\tau_{off} \) slow \(725 \pm 122 \) ms. Reblock by memantine following jumps back to \(-70 \) mV was extremely fast: \(\tau_{on} \) fast \(7.7 \pm 2.2 \) ms (41.6%) and \(\tau_{on} \) slow \(285 \pm 41 \) ms. The extremely rapid reblock by memantine and additional minor effects of such voltage steps on the kinetics of NMDA currents in the absence of antagonist necessitated fitting responses with memantine as the ratio between responses in the presence/absence of memantine. The difference in onset kinetics between the concentration-clamp and voltage-step protocols may be explained by a second, extracellular holding site for memantine on the NMDA receptor (3). Alternatively, it may just indicate that the concentration clamp was not fast enough.
Fig. 1. Antagonism of N-methyl-d-aspartate (NMDA) currents recorded from cultured hippocampal neurons by memantine. (A) Stepwise application of increasing concentrations of antagonist during constant application of agonists. Mean rundown-corrected percentage blockade (±SE) was plotted against antagonist concentration.
Memantine as an Example

Fig. 2. Double exponential kinetics of blockade by memantine in cultured hippocampal neurons. Traces are averages of 10 recordings, and residual capacitive artifacts were subtracted. The bottom trace was constructed by basing recordings in the presence of memantine (black) as a percentage of those in the absence of memantine (gray). This was then used to fit the kinetics of the data. NB: Neurons were shortly clamped to $+70 \text{ mV}$ during the memantine washout phase to facilitate recovery.

Fig. 1. on a logarithmic scale and the curve fit using Eq. 1 (filled circles). (B) Attenuation of currents by memantine (0.3–30 μM) with current recovery between antagonist applications. Mean control-corrected percentage blockade (\pmSE) was plotted against antagonist concentration on a logarithmic scale and the curve fit using Eq. 1 (open circles). The onset and offset kinetics followed a single or double exponential time course. Mean $1/t$ values (\pmSE) were plotted against antagonist concentration and fit according to Eq. 5 from which K_{on} and K_{off} were read. These two values were then used to calculate K_d. (C) Voltage dependence of antagonism of the NMDA currents by a single concentration of memantine (10 μM). The initial holding potential of -80 mV was increased for each stimulation in increments of 10 mV until it reached $+60 \text{ mV}$. In the example recording shown, it can be seen that a voltage step to $+70 \text{ mV}$ was added during current recovery, but this was not deemed necessary for further experiments. The mean percentage blockade of control currents (\pmSE) was plotted against holding potential and fit using Eq. 7.
4.3. Voltage Dependency

Blockade of NMDA receptor-mediated currents by memantine was voltage dependent, as illustrated by the δ value of 0.83 ± 0.04, and an approximately 10-fold higher IC₅₀ value at 0 mV compared with −70 mV [IC₅₀(0 mV) = 17.35 ± 1.78 μM] (see Fig. 1C). The proportion of the voltage-independent sites, β, was very small (0.08 ± 0.02). To ensure that memantine had completely left the channel and the current was fully recovered, a 5-s voltage step to +70 mV was added during the current recovery, as can been seen in the trace shown, but this was not considered necessary for subsequent experiments with moderate affinity blockers that show similar fast kinetics. However, such procedures can be very useful when determining the voltage dependency of more potent, slower blockers such as (+)MK-801 (3).

5. Notes: The Interpretation and Application of Electrophysiological Data

The reason for the better therapeutic safety of memantine compared with other channel blockers such as (+)MK-801 and phencyclidine is still a matter of debate, and data such as those presented in this chapter (summarized in Table 1) have been utilized to support several theories. The interpretation of these electrophysiological data and how they have been used to form hypotheses concerning actions of compounds in vivo are described in the following notes.

1. Memantine and other well-tolerated open channel blockers such as amantadine, dextromethorphan, ARL 15896AR, and ADCI show much faster open channel blocking/unblocking kinetics than compounds burdened with negative psychotropic effects such as (+)MK-801 or phencyclidine (3,6,7,10,25,26). The kinetics of (+)MK-801 and phencyclidine are too slow to allow them to leave the channel upon depolarization, which is reflected in apparently weaker voltage dependency. These two parameters are directly related to affinity, with lower affinity compounds such as memantine showing faster kinetics and apparently stronger voltage dependency, as reflected in estimated δ value (13). The δ value describes the percentage of the transmembrane field the drug experiences when blocking the NMDA receptor channel (3). The unblocking rate of memantine in the continuous presence of this antagonist following depolarizing voltage steps is very rapid and well within the time course of an NMDA receptor-mediated EPSP.

2. Memantine blocks and unblocks open NMDA receptor channels with double exponential kinetics. The amplitude and speed of the fast component of block increases with memantine concentration. In contrast, the speed of fast unblock remains constant, but the amplitude decreases with memantine concentration (8,9,14,15,27). Moreover, the predominant effect of depolarization is to increase
Memantine as an Example

1. Dramatically the weight of the faster recovery time constant (9,11,27). These data indicate that memantine binds to at least two sites within the channel (14,15).

3. Both Lipton’s and Rogawski’s groups have proposed that the ability of low-affinity open channel blockers to gain rapid access to the NMDA receptor channel is important in determining their therapeutic safety in ischemia and epilepsy (7,26,28).

However, this hypothesis alone cannot explain the better therapeutic profile of memantine as, even if receptors are only blocked following pathological activation, they would then remain blocked in the continuous presence of memantine, and therefore be unavailable for subsequent physiological activation. Physiologically, NMDA receptors are transiently activated by millimolar concentrations of glutamate (29) following strong depolarization of the postsynaptic membrane that rapidly relieves their voltage-dependent blockade by Mg$^{2+}$ (30), whereas during pathological activation, NMDA receptors are activated by lower concentrations of glutamate but for much longer periods of time (31–36). Unfortunately, the voltage dependency of the divalent cation Mg$^{2+}$ is so pronounced that it also leaves the NMDA channel upon moderate depolarization under pathological conditions. Although uncompetitive antagonists also block the NMDA receptor channel, high-affinity compounds such as (+)MK-801 have much slower unblocking kinetics than Mg$^{2+}$ and less pronounced functional voltage dependency and are therefore unable to leave the channel within the time course of a normal NMDA receptor-mediated excitatory postsynaptic potential. As a result, (+)MK-801 blocks both the pathological and the physiological activation of NMDA receptors (3).

4. We were the first to suggest that the combination of fast offset kinetics and strong voltage dependency allows memantine to rapidly leave the NMDA channel upon transient physiological activation by millimolar concentrations of synaptic glutamate but blocks the sustained activation by micromolar concentrations of glutamate under moderate pathological conditions (6,12,13). This hypothesis is further supported by the fact that although the predominant component of offset kinetics at near resting membrane potentials is still too slow to allow synaptic activation—that is, around 5 s—the relief of blockade in the continuous presence of memantine upon depolarization is much faster due to an increase in the weight of the faster recovery time constant (9,27,37,38). These kinetics are likely to be even faster in vivo owing to higher temperatures (39). Furthermore, the rate of recovery from memantine blockade is dependent on the open probability of NMDA channels (10) and therefore would be faster in the presence of higher, synaptic concentrations of glutamate (29). Given the crucial role of NMDA receptors in neuronal plasticity, the fact that memantine improves cognition and neuronal plasticity seems paradoxical at the first glance. It should be realized, however, that Mg$^{2+}$ is an endogenous NMDA channel blocker, and its removal from the channel leads both to an impairment in neuronal plasticity (40,41) and a neuronal death (42). Any dysfunction of postsynaptic neurons leading to weakened blockade by Mg$^{2+}$, for example, because of partial depolarization as a consequence of an energy deficit, may trigger such functional
(plasticity) and structural (neuronal loss) deficits \((4, 43)\). Because memantine is more potent and slightly less voltage-dependent than \(\text{Mg}^{2+}\), it may thus serve as a more effective surrogate for \(\text{Mg}^{2+}\) \((6)\). As a result of its somewhat less pronounced voltage dependency, memantine is more effective than \(\text{Mg}^{2+}\) in blocking tonic pathological activation of NMDA receptors at moderately depolarized membrane potentials. However, following strong synaptic activation, memantine like \(\text{Mg}^{2+}\) can leave the NMDA receptor channel with voltage-dependent, fast unblocking kinetics. In turn, memantine suppresses synaptic noise but allows the relevant physiological synaptic signal to be detected. This provides both neuroprotection and symptomatic restoration of synaptic plasticity by one and the same mechanism \((3, 4)\). Antagonists that have “too high” affinity for the channel or “too little” voltage dependence, such as dizocilpine \([(+)]\text{MK-801}\), thus produce numerous side effects as they essentially act as an irreversible plug of the NMDA receptor channel and block both pathological and physiological function.

5. A moderate potentiation of NMDA-induced outward currents by memantine at positive potentials in hippocampal neurons has also been reported \((11)\) (data not shown here). This could be related to the finding that \(\text{Mg}^{2+}\) and ketamine increased NMDA receptor-mediated currents in cultured mouse hippocampal neurons and HEK-293 cells expressing NMDA \(\xi 1/\xi 2\) receptors by increasing the affinity of the glycine\(_B\) site for the co-agonist \((44)\). Such a facilitation would be predicted to be more pronounced with lower concentrations of glycine. This could have important functional implications as the differentiation between the block of NMDA receptors at near resting membrane potentials and the lesser block following strong synaptic depolarization to around \(-20\) mV would be enhanced by such a mechanism and would facilitate the ability of memantine to differentiate between pathological and physiological activation of NMDA receptors. Such a potentiation was not seen in this study, most likely because of the use of saturating concentrations of \(\text{d}-\text{serine}\).

6. It should also be noted that a third theory was recently proposed in an excellent paper by Blanpied et al. \((8)\) \((see \ ref. 5 \ for \ review)\) and supported by data from Sobolevsky et al. \((14)\) (not shown here). The data indicate that memantine and amantadine appear to have a lesser tendency to be trapped in NMDA receptor channels than \(\text{dphencyclidine or (+)}\text{MK-801}\). This difference was attributed to the ability of channel blockers to increase the affinity of NMDA receptors for agonist and the faster kinetics of the amino adamantanes. Receptors blocked by memantine retain agonist and thereby open and release memantine following removal of both agonist and memantine from the extracellular solution \((10)\). This partial trapping is less pronounced for higher affinity compounds as their slower unblocking kinetics do not allow them to leave the channel quickly enough following agonist removal. The relief of block in the absence of agonist was greater in the experiments of Sobolevsky et al. \((14)\). This, however, may have been due to the use of higher concentrations of aspartate that would have increased the proportion of liganded receptors at the time of agonist/antagonist removal. Blanpied et al. \((8)\) proposed
Memantine as an Example

that partial trapping may underlie the better therapeutic profile of memantine as a proportion of channels—around 15–20%—would always unblock in the absence of agonist and thereby be available for subsequent physiological activation. In other words, the antagonism by memantine is like that of a low intrinsic activity partial agonist in that it does not cause 100% blockade of NMDA receptors. Although this theory is attractive, it is only relevant for the therapeutic situation if partial trapping also occurs in the continuous presence of memantine. This point had not been addressed previously. This prompted us to perform experiments on partial trapping in the continuing presence of memantine, and the results of these studies were very similar to those reported by Blanpied et al. (8), that is, around 15% of channels released memantine following agonist removal (3). However, although this theory can be used to explain the therapeutic tolerability of memantine, it provides no mechanism of action for the symptomatic effects observed in AD patients.

References

Memantine as an Example

QUERIES TO BE ANSWERED (SEE MARGINAL MARKS)

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

<table>
<thead>
<tr>
<th>Chapter-02</th>
<th>Query No.</th>
<th>Page No.</th>
<th>Line No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>16</td>
<td>34</td>
<td></td>
<td>In the sentence ‘In addition, the unblocking kinetics are voltage dependent, and this aspect cannot be addressed by using ramping protocols in voltage-dependency experiments (see below), please be specific about the section number rather than the phrase ‘see below’.</td>
</tr>
<tr>
<td>AQ2</td>
<td>17</td>
<td></td>
<td>Running head</td>
<td>Please check if the running head is OK.</td>
</tr>
<tr>
<td>AQ3</td>
<td>17</td>
<td>03</td>
<td></td>
<td>In the sentence ‘The contribution of voltage-activated calcium channels upon the currents measured can be reduced by lowering Ca(^{2+}) in the extracellular solution (see below), please be specific about the section number rather than the phrase ‘see below’. Please clarify whether the text ‘10s of seconds’ means ‘tens of seconds’ in the sentence ‘The contribution of all voltage-activated channels…’</td>
</tr>
<tr>
<td>AQ4</td>
<td>17</td>
<td>07</td>
<td></td>
<td>In the sentence ‘However, such protocols are long and are associated with other potential problems (see below), please be specific about the section number rather than the phrase ‘see below’.</td>
</tr>
<tr>
<td>AQ5</td>
<td>17</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query No.</td>
<td>Page No.</td>
<td>Line No.</td>
<td>Query</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>AQ6</td>
<td>17</td>
<td>16</td>
<td>In the sentence ‘This problem can be minimized by decreasing Ca^{2+} concentrations in the solutions used (see also above)’, please be specific about the section number rather than the phrase ‘see also above’.</td>
<td></td>
</tr>
<tr>
<td>AQ7</td>
<td>17</td>
<td>36</td>
<td>Please provide the full form of ‘ATP’</td>
<td></td>
</tr>
<tr>
<td>AQ8</td>
<td>17</td>
<td>36</td>
<td>In the sentence ‘Aside from the various forms of receptor desensitization detailed above, NMDA receptors…’, please be specific about the section number rather than the phrase ‘detailed above’.</td>
<td></td>
</tr>
<tr>
<td>AQ9</td>
<td>19</td>
<td>11</td>
<td>Please provide the full form of ‘EGTA’.</td>
<td></td>
</tr>
<tr>
<td>AQ10</td>
<td>19</td>
<td>13</td>
<td>Please provide the full form of ‘cAMP’.</td>
<td></td>
</tr>
<tr>
<td>AQ11</td>
<td>19</td>
<td>23</td>
<td>Please provide the full form of ‘PCP’.</td>
<td></td>
</tr>
<tr>
<td>AQ12</td>
<td>19</td>
<td>29</td>
<td>The text ‘Hank’s buffered salt solution’ has been changed to ‘Hanks’ buffered salt solution’. Please check if this is OK. Please clarify if the text ‘200–250 μM’ is OK in the sentence ‘The openings of the square-walled ….’</td>
<td></td>
</tr>
<tr>
<td>AQ13</td>
<td>21</td>
<td>04</td>
<td>In the sentence ‘The composition of the intracellular solution used when recording NMDA receptor mediated from hippocampal neurons is given in Subheading 2.2.14’, please clarify whether the given subheading number is OK as there seems to be no such subheading.</td>
<td></td>
</tr>
<tr>
<td>AQ14</td>
<td>21</td>
<td>39</td>
<td>In the sentence ‘The corresponding extracellular bath solution composition is given in Subheading 2.2.15’, please clarify whether the given subheading number is OK as there seems to be no such subheading.</td>
<td></td>
</tr>
<tr>
<td>AQ15</td>
<td>22</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query No.</td>
<td>Page No.</td>
<td>Line No.</td>
<td>Query</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>AQ16</td>
<td>23</td>
<td>05</td>
<td>In Table 1, please provide the full form of 'PCP' and also clarify whether the deletion of the abbreviation 'NT' is OK as it is not mentioned in the table.</td>
<td></td>
</tr>
<tr>
<td>AQ17</td>
<td>26</td>
<td>12</td>
<td>In the sentence 'Blockade was expressed as a percentage of the mean control current recorded before and after the application of antagonist, as in the kinetic experiments described above', please be specific about the section number rather than the phrase 'described above'.</td>
<td></td>
</tr>
<tr>
<td>AQ18</td>
<td>30</td>
<td>14</td>
<td>Please provide the citations for all the notes.</td>
<td></td>
</tr>
<tr>
<td>AQ19</td>
<td>30</td>
<td>24</td>
<td>Please provide the full form of 'ARL'.</td>
<td></td>
</tr>
<tr>
<td>AQ20</td>
<td>30</td>
<td>24</td>
<td>Please provide the full form of 'ADCI'.</td>
<td></td>
</tr>
<tr>
<td>AQ21</td>
<td>30</td>
<td>34</td>
<td>Please provide the full form of 'EPSP'.</td>
<td></td>
</tr>
<tr>
<td>AQ22</td>
<td>33</td>
<td>16</td>
<td>In 'Reisberg et al., 2003', the end page number '610' has been changed to '612'. Please clarify whether this is OK.</td>
<td></td>
</tr>
</tbody>
</table>